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Radiative transfer from a homogeneous half-space: 

A fast algorithm solution.

A computer algorithm is provided for the solution of a 
periodically heated half-space with radiative transfer. It 
takes advantage of matrix hardware commands to perform the 
Laplace transform solution and can be adapted to other sys­ 
tems and languages which provides fast matrix arithmetic.

Introduction

Analysis of thermal infrared data from aircraft, satel­ 
lites or ground-based platforms commonly requires the use of 
a model. Because there is a non linear radiative transfer 
term in the boundary condition three methods are generally 
applied: linearization, finite differences and Laplace 
transform. The purpose of this paper is to describe a numer­ 
ical solution based on the Laplace transform method developed 
by Jaegar (1953). This work represents an updating of an 
earlier treatment (Watson, 1971) and takes advantage of cur­ 
rent computer technology in matrix arithmetic, either using 
machine hardware or array-processor technology.

The Problem:

Given a periodically heated homogeneous half-space, the sur­ 
face temperature variation is related to the surface heat
flux by the formula 
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where Fn " G n ~ * V   P.+rT P n (2)

G is a discrete representation of the periodic heating func 
tion at times t=n^t;n = l,2,...m and 
m^t = T , the heating period.

V is the discrete surface temperature in the nth interval.

p is a set of numerical coefficients determined solely by
the number of intervals in the period, m (Jaegar, 1953)

P is the thermal inertia of the homogeneous half-space. 

<r is the Stefan-Boltzmann constant.

F is the surface flux in the nth interval, n



In its most general form the flux Gn contains the 
radiative heating from the sun and sky and the sensible 
heat exchange between the ground and the atmosphere, the 
latter being a function of the surface temperature V n . 
For purposes of this example Gn will be treated as indepen­ 
dent of V n . Extensions of other cases using appropriate 
empirical formulas (Watson, 1980) can be developed from 
this example.

An iterative solution to equation 1, subject to the 
boundary condition (equation 2) can be expressed using 
the following matrix notation.
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Using this notation, equation 1 becomes

F * Q.V (3)

For the ith iteration let us introduce

A « v - V n n n (4)

Then the linear expansion for the quartic term in equation 
2 can be written
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Equation 1 for the ith iteration can then be re-written as
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Substituting equations 5 and 6 in equation 2 yields

(i) _ G - F n n - ertV (7)



A summary of the iteration equations follows

(8)

Q n

V {i) = A (1} + V (i ~ 1J (10) 
n n n

The iterations (equations 8,9, and 10) are repetitively 
solved until some convergence criterion has been satisfied. 
The following method provides a fairly straightforward 
approach.

Let us introduce a convergence term,E and an error term 
for the ith iteration where

E (i) a Max! A n (i) l n«l, 2. .m (11)

<r (i) s Max! Un - A n (i) f (12)

where Un {i) a lim Vn (i) (13)
i - 00

For E ^<.l we have found that a< E and hence the accuracy 
desired in the solution can be used to determine the iteration 
limit .

The final step to the solution of the problem is selec­ 
tion of initial iteration values. One method is to linearize 
the boundary condition and solve using a Fourier series 
(Carslaw & Jaegar , 1959, p. 74; Watson, 1975)

Thus
V/1 ' -- U n + V A' cos (wpt + e } (14)
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and
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Often a satisfactory solution requires only the first harmonic 
term (p=l ) .

Example

A sample numerical solution is provided for the case 
where G is a half wave plus a constant. This corresponds 
approximately to the conventional diurnal heating of the 
earth's surface.

Let G (t) = A cos wt + B -T/2 S wt £ ?/2 

= B f /2 < I wtl

_2 
Choose A = 400 W.m_

B = 200 W.m

A set of temperature values is computed for several 
values of P (1000, 1500, 2000, 2500 TIU) and the curves 
plotted (figure 1) using m=48. Temperatures are listed 
at noon (n=l) and midnight (n=25) for reference in Table 1.

Table 1. --Selected temperature values for various thermal 
inertias .

Thermal inertias Temperatures

P

1000
1500
2000
2500

T(n-l)

292.9
288.2
285.4
283.6

T(n=25)

265.0
268.0
269.8
270.9
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Figure 1. Diurnal temperature variations for a range of 
thermal inertias (P). P=1000, 1500, 2000, 2500 TIU 
The time increment is l/48th of the heating cycle. 
n=l corresponds to zero time.
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Figure 2. The error term E ^ (see equation 11 versus
iteration numbers i for varying thermal inertias (as
in Figure 1).



A convergence factor of 0.1 degrees as used to termi­ 
nate the iterations. A plot (figure 2) of the convergence 
term E versus the error d (l) is provided to illustrate 
the convergence of the solution.

Program Listing

The listing provided is in extended BASIC from an HP 
9845 minicomputer and illustrates the use of matrix commands 
to solve the problem. It can be readily adapted to other 
systems with similar firmware features.

SUB Transf (Cons. Q (*) , FO (*) . VI (*) , V2 (*) )
! INPUT: Arrays: Q (*) . FO (*) . VI (*) Const: Cons
! OUTPUT: V2 (*j
! Cons=P/SQR (PI*T)
OPTION BASE 1
DIM F (4B. 1) , V3 (48, 1) , V4 (4B, 1) . Del (4B. 1)
Sigma=5.67E-B
! ITERATIONS
Iter=l
Next_iter: MAT F=Q*V1 ! Equation B
MAT F=F* (Cons)
MAT F=»FO-F
MAT V4-V1.VI
MAT V3=V4.V1
MAT V4 = V3. \M
MAT V4=V4* (Sigma)
MAT F=F-V4
MAT V3 = V3* (4*Sigma)
MAT V3 = V3+ (Q (1, 1) *Cons)
MAT Del=F/V3 ! Equation 9
MAT SEARCH Del (*. 1) . MAX; Dmax
MAT SEARCH Del (*. 1) . MIN; Dmin
MAT V2=Vl+Del ! Equation 10
Dum=MAX (Dmax, ABS (Dmin) ) ! Equation 11
IF Dum<.l THEN SUBEXIT
Iter=Iter-M
MAT V1=V2
GOTO Next_iter
SUBEND
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